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Abstract
We present exact analytical results for the thermodyanmic properties of a two-
dimensional (2D), harmonically trapped charged quantum gas in a magnetic
field. While our results are applicable to both Fermi and Bose gases, we focus
our attention on trapped fermions owing to their relevant application in the
density-functional theory of inhomogeneous Fermi systems. In particular, we
test the Thomas–Fermi (or continuum) approximation (TFA) for the functional
relation τ [ρ] using the exact ρ(r) and show that it reproduces the local and
global properties of the exact kinetic energy density τ(r) surprisingly well.
However, when we compare our exact results for various thermodynamic
quantities with the TFA, we find that it misses several important features. These
deviations are shown to be entirely due to the quantum mechanical properties
of the system, which are not accounted for in the continuum approximation.

PACS numbers: 03.75.Ss, 05.30.Fk

1. Introduction

In a very recent paper, we have provided an exact, analytical expression for the finite-
temperature first-order density matrix (FDM) of a charged, 2D, harmonically trapped quantum
gas in the presence of a constant magnetic field [1, 2]. While the primary goal of that work
was to obtain an exact closed form expression for the FDM, it was noted that a very useful
application would be a detailed analytical investigation of the thermodynamic properties of
the 2D trapped charged quantum gas, as derived from the FDM. The motivation for such
a study is founded on some of the interesting properties of ultra-cold, 2D harmonically
trapped Fermi gases, uncovered by one of us and Brack [3]. Specifically, in [3], it was
shown analytically that for the special case of 2D, the Thomas–Fermi (TF) density-functional
theory (DFT) at zero magnetic field reproduces the exact spatial variations found for the
particle and kinetic energy densities, extremely well, except near the classical turning point.
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More remarkable, however, was the discovery that the simple TF DFT—without gradient
corrections—yields the exact quantum mechanical energy of the system for any number of
filled shells, in spite of the fact that the TF theory cannot be variationally exact. The fact that
the simple TF DFT in 2D is in agreement with the full quantum mechanical calculation is thus
highly non-trivial, since TF DFT is theoretically exact only in the local-density approximation
(LDA). This finding has direct relevance in DFT, where the TFA is widely used to establish
explicit expressions for the various energy density functionals of inhomogeneous Fermi
systems.

With applications to DFT in mind, it is perhaps then natural to ask just how well the TFA
holds when one also includes the presence of an external magnetic field perpendicular to the
inhomogeneous 2D system (e.g., quantum dots in a constant magnetic field). While Brack and
van Zyl have already provided the answer to this question for the case of zero magnetic field,
to our knowledge, no analogous analytical investigation including the presence of an external
magnetic field has yet been performed. In view of the fact that semiclassical approaches
(such as the TF DFT) are a very valuable tool for providing simple insight into otherwise
difficult many-body systems, our motivation for extending the results of [3] to include an
external magnetic field is therefore not purely academic. Indeed, one need only look as far as
the relatively recent works of Schneider and Wallis [4] and Toms [5], for additional impetus
for our proposed extension. Specifically, these papers have investigated the thermodynamic
properties of an ideal, harmonically trapped Fermi gas using numerical [4] and analytical
[5] approaches, with the key finding being that there are step-like features in thermodynamic
quantities of the system beyond what is obtained in the continuum approximation.

An analytical investigation of the step-like features found for the thermodynamic
quantities (e.g., chemical potential and specific heat) was performed by Toms [5], in which the
steps were understood as a consequence of the de Haas-van Alphen part of the thermodynamic
potential. This analysis, however, was limited to the case of zero magnetic field, thereby
rendering it difficult to obtain any additional insight into how these purely quantum mechanical
features are altered when an external magnetic field is imposed. In view of Toms’ interpretation
of the step-like features in terms of the de Haas-van Alphen-type effect, it seems a logical
progression to further investigate the system discussed above when an external magnetic field
is present. The purpose of the present work then, is to give a detailed, analytical study of the
thermodynamic properties of a 2D harmonically trapped charged quantum gas in a constant
external magnetic field of arbitrary strength and at finite temperature. Owing to the fact that
our analysis includes an external magnetic field a priori, the results we present here are more
general than those found in [3–5], the latter results being essentially special cases of the current
investigation.

The rest of our paper is organized as follows. In the next section, we provide a detailed
derivation of the exact kinetic energy density of a 2D harmonically trapped quantum gas
at finite temperature. This expression is then compared with the widely used TFA for the
kinetic energy density, where we focus on how well the TFA holds for both the local (i.e.,
spatial) and global (i.e., integrated) properties of the system. Following this, we examine the
step-like features found for the integrated kinetic energy (which are most prominent at zero
temperature) with a view to obtaining a simple physical explanation for the origin of these
structures. Subsequent to this, we then examine the chemical potential at both zero and finite
magnetic fields, and again study the origin of the step-like features, in addition to comparing
the exact expressions with their TF counterparts. We also demonstrate analytically how the
exact expressions for various thermodynamic quantities approach the TFA in the appropriate
limits, and provide simplified expressions for the exact results in the limits of strong and weak
magnetic fields.
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2. Kinetic energy

The system under consideration is an ideal gas of harmonically trapped fermions (or spinless
charged bosons) in two dimensions, with a potential V (�r) = 1

2mωor
2. Also included is a

magnetic field of constant magnitude in the perpendicular direction, with vector potential, in
the symmetric gauge, given by �A = (− 1

2By, 1
2Bx, 0

)
. The Hamiltonian is thus given by

Hr = − h̄2

2m
∇2 + ih̄ωc

(
x

∂

∂y
− y

∂

∂x

)
+

1

2
mωeffr

2, (1)

where ωc = eB
2mc

is the Larmor frequency, and ωeff =
√

ω2
o + ω2

c is the effective frequency. In

what follows, we have scaled all lengths by
√

h̄
mωeff

, and all energies by h̄ωeff , with the magnetic
field strength being encoded in the dimensionless quantity ω = ωc/ωeff . We will also assume,
in all calculations, a spin degeneracy factor of 2. In the case of spinless charged bosons, the
spin degeneracy factor of 2 should be omitted. We have neglected the coupling between the
spin of the fermions and the magnetic field in equation (1), since it just adds a constant term
to the Hamiltonian if, for example, the spins are taken to be anti-parallel to the field. We
also wish to point out that equation (1) has the same form for a cranked harmonic oscillator,
whose energy eigenvalues are identical to those of a deformed 2D harmonic oscillator [8, 11].
This fact has previously been used by Habeeb [12] to derive the Bloch density matrix for the
system.

2.1. Exact kinetic energy density

To calculate the exact kinetic energy density, we will start from the first-order density matrix
for the system, which has been reported earlier [1, 2], and is given by the following expression:

ρ(�r, �r0) = 2

π

∞∑
l=0

∞∑
m=0

∞∑
n=0

Lm+n
l (2A)

Bm

m!

B∗n

n!
e−Aflmn(µ, T ), (2)

where

A = 1
2

(
x2 + y2 + x2

0 + y2
0

)
, B = xx0 + yy0 + i(x0y − y0x), (3)

and Lν
λ(x) is an associated Laguerre polynomial [6]. The function flmn(µ, T ) is the Fermi

function:

flmn(µ, T ) = 1

exp
(εlmn − µ

T

)
+ 1

= 1

exp
( 1+2l+m+n+ω(n−m)−µ

T

)
+ 1

, (4)

where T denotes the dimensionless quantity kBT /h̄ωeff . Unless otherwise noted, we will
focus on the limit T → 0, since it is in this regime where the quantum effects that we wish
to investigate are most prominent. In this limit the Fermi function approaches the unit step
function, flmn → 	(εf − εlmn), where εf is the Fermi energy, and has the effect of truncating
the infinite sums at finite values of l, m and n.

The exact kinetic energy density is thus obtained by inserting equation (2) into the well-
known expression

τ(�r) = [Hr − V (�r)]ρ(�r, �r0)|�r=�r0 (5)

where Hr denotes the Hamiltonian with respect to the variable �r = (x, y). The resulting
expression from this calculation is given by
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τ(�r) =
∑
l,m,n

fl,m,n(µ, T )

[
(m + n + 1)Lm+n+1

l (2r2)

+

(
l + ω(n − m) +

1

2
r2(ω2 − 1) − 2mn/r2

)
Lm+n

l (2r2)

]
r2(m+n)

m!n!
e−r2

, (6)

where the Laguerre differential equation, and recursion relation between the Laguerre
polynomials have been used to simplify [6]. While equation (6) is exact, there is an alternative
approach based on the explicit single-particle wavefunctions, which results in a much simpler
expression for the kinetic energy density, and is more convenient for some of the calculations
presented below.

By using the creation and annihilation operators for a 2D harmonic oscillator in a magnetic
field, one can show that the single-particle eigenfunctions are given by

ψMN(�r) =
√

M!

πN !
rN−M ei(N−M)θLN−M

M (r2) e−r2/2, (7)

with energy eigenvalues

εMN = 1 + M + N + ω(N − M), M,N = 0, 1, 2, . . . . (8)

The interpretation of M and N is as follows. In the limit that the strength of the harmonic
oscillator trap goes to zero, N will be the index of the Landau levels. In the limit that the strength
of the magnetic field goes to zero, M + N will be the index of the harmonic oscillator shells
(denoted by s in this paper). The eigenvalue of the z-component of the angular momentum is
N − M . Now, setting �r0 = �r in equation (2), we obtain the particle density:

ρ(�r) = 2

π

∞∑
l=0

∞∑
m=0

∞∑
n=0

Lm+n
l (2r2)

r2(m+n)

m!n!
e−r2

flmn(µ, T ). (9)

Making use of the the above eigenfunctions, the particle density may also be written as

ρ(�r) =
∞∑

M=0

∞∑
N=0

|ψMN(�r)|2fMN(µ, T ), (10)

where the Fermi function fMN(µ, T ) is equation (4) with εlmn replaced by the energy
eigenvalues εMN , as given in equation (8). With a view to comparing equations (9) and
(10), we will redefine the summation indices in equation (9) such that the Fermi function flmn

has the same form as fMN . This requires that l + m = M , and l + n = N (see equations (4)
and (8)). Making this substitution gives

ρ(r) = 2

π

∞∑
M=0

∞∑
N=0

M,N∑
l=0

LM+N−2l
l (2r2)

r2(M+N−2l)

(M − l)!(N − l)!
e−r2

fMN(µ, T ), (11)

where the limit in the l-sum is the lower of either M or N (this ensures that l, m, and n are
always �0, as required). The l-sum may be evaluated by making use of the summation
relation [6]

n∑
k=0

Lα+2k
n−k (x + y)

(xy)k

k!(k + α)!
= Lα

n(x)Lα
n(y)

n!

(n + α)!
, (12)

and the relation√
M!

N !
rN−MLN−M

M (r2) =
√

N !

M!
rM−NLM−N

N (r2), (13)
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from which it can be shown that
M,N∑
l=0

LM+N−2l
l (2r2)

r2(M+N−2l)

(M − l)!(N − l)!
e−r2 = M!

N !

[
LN−M

M (r2)
]2

r2(N−M) e−r2

= |ψMN(�r)|2, (14)

as expected if equations (10) and (11) are equal.
We are now in a position to calculate a much simplified form for the kinetic energy density.

We note that equation (5) may be written as

τ(�r) =
∑
all i

[Hr − V (�r)]ψ∗
i (�r0)ψi(�r)fi(µ, T )|r0=r , (15)

and after inserting the eigenfunctions, equation (7), into (15), we obtain

τ(�r) = 2

π

∞∑
M=0

∞∑
N=0

M!

N !

(
εMN +

1

2
(ω2 − 1)r2

) [
LN−M

M (r2)
]2

r2(N−M) e−r2
fMN(µ, T ). (16)

Inserting the summation relation, equation (14), into (16) gives

τ(�r) = 2

π

∞∑
M=0

∞∑
N=0

M,N∑
l=0

(
εMN +

1

2
(ω2 − 1)r2

)
LM+N−2l

l (2r2)

× r2(M+N−2l)

(M − l)!(N − l)!
e−r2

fMN(µ, T ), (17)

which, upon reverting to the original indices l, m, n, reads

τ(�r) = 2

π

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
εlmn +

1

2
(ω2 − 1)r2

)
Lm+n

l (2r2)
r2(m+n)

m!n!
e−r2

flmn(µ, T ). (18)

Note that equation (18) is analytically much simpler than equation (6). Moreover, upon
comparison with equation (16) we note that equation (18) contains only single Lν

λ(2r2) terms,

whereas equation (16) contains
[
Lν

λ(r
2)

]2
terms, in addition to inverse powers of r. From a

numerical point of view, such singular terms (i.e., as r → 0) are not desirable, although they
do conspire to yield a finite result for τ(0) provided enough terms in the series are retained.

Equation (18) is to be viewed as a generalization of the 2D result presented in [2]1,
where only the case of zero-magnetic field was studied. It is also worth mentioning again that
equation (18) is also directly applicable to a charged, 2D trapped spinless Bose gas (see, e.g.,
[7]) provided the ‘+1’ in the denominator of equation (4) is changed to a ‘−1’ and the spin
degeneracy factor of 2 is omitted. To our knowledge, the above explicit analytical expressions
for τ(�r) at finite temperature have not appeared in the literature.

2.2. Thomas–Fermi approximation

2.2.1. Local properties. Having obtained an exact expression for τ(�r), we now proceed to
first compare its local (i.e., spatial) properties with the TFA (or LDA) of the kinetic energy
density. This is in the spirit of the analytical study presented in [3] in which the same
comparison was made, but only for the case of zero magnetic field.

The TFA to the kinetic energy density can be obtained by making use of the systematic
Wigner–Kirkwood (WK) semiclassical expansion [8]. In this approach, the FDM is written
as an (asymptotic) series in powers of h̄ with the term to zeroth order in h̄ yielding the TFA.

1 Simplified analytical expressions of the results presented in [1] can be found in [2].
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Figure 1. The T = 0 kinetic energy density for N = 20 particles. The three sets of curves are
for, from top to bottom, ωc

ωo
= 0, 0.5, 1, corresponding to ω = 0, 1√

5
, 1√

2
. The solid lines are the

exact densities, the dashed lines are the Thomas–Fermi functional [equation (19]with exact density
inserted, and the dotted lines are the pure Thomas–Fermi densities (i.e., equation (19) with (20)
inserted). This same convention is used for all figures.

If terms of higher order in h̄ are retained, the so-called gradient corrections associated with
the inhomogeniety of the system are obtained. The details of this approach can be found in
[8], and as they are not immediately pertinent to the present work, we simply provide the final
expression for the TFA of the kinetic energy density, leaving the details of the calculation to a
future work (see also [7, 9]):

τTF[ρ(�r)] = π

2
[ρ(�r)]2. (19)

Interestingly, the TF kinetic energy density above has the same functional form as that of
the free 2D system in the absence of a magnetic field, but here, the spatial magnetic field
dependence is encoded in the density ρ. Note that this is not the case for 3D, whereby the
form of the TFA of the kinetic energy functional explicitly depends on the strength of the
magnetic field. As mentioned above, there are gradient corrections to equation (19), but as
our present motivation is to investigate how well the exact results compare with the LDA (i.e.,
analogous to the study in [3]), we will not consider them here. The TFA to the particle density
obtained from the WK semiclassical expansion technique is given by (in our scaled units)

ρTF(�r) = 1

π

[
εTF
f − 1

2
(1 − ω2)r2

]
	

[
εTF
f − 1

2
(1 − ω2)r2

]
, (20)

where εTF
f is the TFA to the Fermi energy.

Figure 1 shows the T = 0 spatial dependence of the kinetic energy density for N = 20
particles. Included in this plot are the exact density, the TF functional, equation (19) with
the exact particle density, equation (9) inserted (which we will refer to as TF functional),
and the smooth TF density, i.e. equation (19) with the TF particle density, equation (20),
inserted (which we will refer to as pure TF), shown for several magnetic field strengths. As
seen from the figure, the TF functional reproduces even the local spatial oscillations in the

6
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Figure 2. Same as figure 1, but for N = 210 particles. The inset shows a close-up around the tail
region.

density remarkably well. The pure TF density is a smooth curve which the exact density τ(�r)
oscillates around. This has already been observed in [3] for the case of zero magnetic field,
but it is now evident from figure 1 that a similar behaviour also holds when a constant external
magnetic field is introduced.

In addition to the TF functional being surprisingly accurate at low numbers of particles, it
was also shown in [10] that in the limit as N → ∞, the TF functional, τTF[ρ(�r)], approaches
the exact kinetic energy density (in the absence of a magnetic field). To investigate whether
this result holds in the presence of a magnetic field, figure 2 shows the kinetic energy densities
for a higher number of particles, N = 210. Even at this relatively low number of particles
the kinetic energy densities are nearly indistinguishable. The inset shows a close-up near the
tail region, where the deviations between the densities are most noticeable. The numerical
evidence we have presented here strongly suggests that the result of [10] also holds in the
presence of a magnetic field. Note that the remarkable agreement between the exact and TF
functional is quite unexpected, particularly because of the fact that the TFA to the kinetic
energy density has no explicit magnetic field dependence and can be obtained by simply using
the zero-field expressions for the densities. This result does not appear to have been noticed
before.

Referring again to figures 1 and 2, it is also interesting to note that the exact density and
TF functional appear to be in exact agreement at r = 0 in both figures. It is straightforward to
show analytically that this is in fact the case. Starting from equation (18), the only non-zero
terms at r = 0 will be for m = n = 0. We therefore obtain the exact density as (at T = 0)

τ(0) = 2

π

∞∑
l=0

fl00(µ, T = 0)εl00L
0
l (0) = 2

π

� εf −1

2 �∑
l=0

(2l + 1)

= 2

π

(⌊
εf − 1

2

⌋
+ 1

)2

, (21)
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where �x� denotes the floor function; i.e., the largest integer less than or equal to x. The exact
particle density at r = 0 is (again with m = n = 0)

ρ(0) = 2

π

� εf −1

2 �∑
l=0

L0
l (0) = 2

π

(⌊
εf − 1

2

⌋
+ 1

)
, (22)

so that the TF kinetic energy density is

τTF(0) = π

2
ρ(0)2 = 2

π

(⌊
εf − 1

2

⌋
+ 1

)2

. (23)

Thus the exact and TF functional kinetic energy densities at r = 0 agree for any number of
particles and magnetic field strength.

2.2.2. Global properties. To further test the validity of the TFA for this system, we now
investigate the total kinetic energy, obtained by integrating the kinetic energy density over all
space. For this calculation it will be simpler to use the form for the kinetic energy density
given in equation (16). Integrating over all space, one obtains for the exact total kinetic energy
[6]:

Ekin =
� εf −1

1+ω
�∑

N=0

� εf −1−(ω+1)N

1−ω
�∑

M=0

(
(ω2 + 1) + (ω − 1)2M + (ω + 1)2N

)
(24)

=
� εf −1

1+ω
�∑

N=0

(⌊
εf − 1 − (ω + 1)N

1 − ω

⌋
+ 1

)

×
(

(ω2 + 1) + (ω + 1)2N +
(ω − 1)2

2

⌊
εf − 1 − (ω + 1)N

1 − ω

⌋)
. (25)

Inserting equation (2) into the TF functional and integrating yields [6]

ETF
kin =

∑
l,m,n

∑
l′,m′,n′

	(εf − εlmn)	(εf − εl′m′n′)

m!n!m′!n′!2m+n+m′+n′

× (−1)l+l′(m + n + m′ + n′)!
(

l + m + n

l′

)(
l′ + m′ + n′

l

)
. (26)

While equation (26) may look somewhat cumbersome, it is nevertheless a simpler numerical
procedure than a direct numerical integration of equation (19) with the exact density inserted
as input.

As mentioned above, it was found in [3] that in the absence of a magnetic field, the
TF functional (with the exact density inserted) integrates to the exact total kinetic energy.
To test this result in the presence of a magnetic field, figure 3 shows plots of the integrated
kinetic energy (exact, TF functional, and pure TF) as a function of the scaled magnetic field
strength, ω (recall from the definition that ω = 0 corresponds to no magnetic field, and ω → 1
corresponds to the field going to infinity). As seen from the graphs, the TF functional does
not produce the exact kinetic energy at finite magnetic field strengths, but nonetheless closely
follows the exact kinetic energy, particularly at weak field strengths. The kinetic energy
has a pronounced step-like form, with discrete jumps occurring at certain values of ω as the
magnetic field is increased. Again, the pure TF expression is a smooth curve that follows the
general trend of the exact energy. As expected, the TF functional becomes more accurate as
the number of particles is increased. For example, figure 3(b) compares the integrated kinetic
energy densities for N = 210 particles; the exact and TF curves are nearly indistinguishable,

8
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Figure 3. T = 0 integrated kinetic energy, plotted against the scaled magnetic field strength, ω.
Panel (a) is for N = 20 particles, and panel (b) is for N = 210. The arrows in panel (a) indicate
the special values of ω for which a discontinuity in the integrated kinetic energy occurs. These
arrows correspond to the special values of ω, indicated by solid circles, in figure 4.

except when the field becomes very strong. Notice, however, that the pure TF calculation
(dotted line) becomes increasingly inaccurate as ω → 1; it incorrectly approaches zero (in
units of h̄ωeff),2 whereas the exact energy approaches Ekin = N , which is expected if all of
the particles are in the lowest Landau level.

3. Quantum mechanical effects

We will now examine the origin of the steps that occur in the integrated kinetic energy (see
figure 3) as the strength of the magnetic field is varied. With [4, 5] in mind, we will also
subsequently examine the step-like features exhibited by the chemical potential as the particle
number is varied, for both the zero and finite-magnetic field cases.

3.1. Kinetic energy

Figure 4 shows a plot of the single particle energy levels (i.e., Fock–Darwin spectrum) of the
system as a function of the scaled magnetic field strength ω. As the magnetic field strength
is changed, the order of the energy levels from lowest to highest energy changes as they cross

2 As the magnetic field is increased, the TF kinetic energy stays constant, at ETF = 1
3 h̄ωoN 3/2. However, since

ωeff → ∞ as the magnetic field gets large, ETF

h̄ωeff
→ 0.

9
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Figure 4. Energy level spectrum for harmonically confined particles is a magnetic field. The left
side (at ω = 0) corresponds to the degenerate shells of an isotropic harmonic oscillator, while the
right side (at ω = 1) corresponds to the Landau levels of a uniform gas in a magnetic field. The
bold line traces the Fermi energy for N = 20 particles, while the solid circles give the values of ω

where the steps occur in the kinetic energy. The dashed lines indicate the special values of ω as
discussed in section 3.2. For clarity, only states originating from the first 15 harmonic oscillator
shells are shown.

on the diagram. At low temperatures, therefore, the highest energy particles will move into
different states as the field strength is changed in order to ensure that only the lowest energy
states are occupied. It is at these values of ω, for which a previously unoccupied state becomes
occupied, that the steps in the kinetic energy occur.

To illustrate this, the bold line in figure 4 traces the Fermi energy for N = 20 particles.
The values of ω corresponding to the steps in the kinetic energy are marked by solid circles.
The location of the solid circles in this figure correspond to the arrows shown in figure 3(a).

3.2. Chemical potential

In the work of Schneider and Toms [4, 5], it was found that the (zero magnetic field) chemical
potential as a function of the number of particles displays discrete steps at particle numbers
determined by the filling of the harmonic oscillator shells, which gradually smooth out as the
temperature is increased. Figures 5 and 6 show the chemical potential at various temperatures
for ω = 0, and ω = 0.5, respectively. Also included is the pure TF approximation to the
chemical potential (again given by the dotted line).

At finite magnetic field strengths, the chemical potential shows a similar structure to the
zero field case (i.e., figure 5), except that the particle numbers at which the steps occur, the
so-called ‘magic numbers’ in the language of [4], depends on the value of ω. As was observed
in [4, 5] for the special case of ω = 0, as T increases the steps in the chemical potential begin
to smooth out. This results in the TF expression becoming more accurate, thereby confirming
that the origin of these steps is purely quantum mechanical (i.e., the discrete energy level
structure of the system).
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Figure 5. Chemical Potential as a function of particle number at ω = 0. Panel (a) is for T = 0,
panel (b) is for T = 0.05, and panel (c) is for T = 0.5.

Figure 6. Same as figure 5, but for ω = 0.5.

At zero temperature, the chemical potential equals the Fermi energy, the energy of the
highest occupied level. As the number of particles is increased, the Fermi energy will not
change until all degenerate states with the same energy are filled, and the next highest energy
level must be occupied. The values of the ‘magic numbers’ at which the steps occur are

11
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therefore determined by the degeneracy of the energy levels. We will now examine how the
degeneracy of the levels depends on the magnetic field strength, with a view to explaining the
steps seen in figures 5 and 6.

The energy levels, equation (8), may be written as

εMN = 1 + (1 − ω)M + (1 + ω)N. (27)

While it is difficult to analyse the degeneracy of these levels for arbitrary ω, we can
nonetheless get some understanding of the steps in the chemical potential by considering
the following special case. Equation (27) will have the simplest mathematical structure when
(1 + ω) = i(1 −ω), where i is an integer, since in that case the levels will all be evenly spaced.
This assumption implies that

ω = i − 1

i + 1
. (28)

Thus, when equation (28) is satisfied, the energy levels will be

εk = 1 + (1 − ω)k, k = 0, 1, 2 . . . . (29)

and the degeneracy will be given by

νk =
⌊

k

i

⌋
+ 1 =

⌊(
1 − ω

1 + ω

)
k

⌋
+ 1. (30)

The energy levels thus have, in this simple case, a form analogous to an isotropic harmonic
oscillator, with evenly spaced increasingly degenerate levels. The degeneracy, however, only
increases with every i levels, rather than with every level. For example, ω = 1

3 gives i = 2,
and νk = ⌊

k
2

⌋
+ 1, so that the degeneracy increases with every second energy level. The first

few of these special values of ω are highlighted in figure 4 by dashed lines (note that these
values do not necessarily correspond to steps in the kinetic energy).

The Fermi energy is related to the particle number by

N = 2
kf∑

k=0

νk. (31)

Making use of (30), a careful evaluation of the sum yields

N =
(

2kf − i

⌊
kf

i

⌋) ⌊
kf

i

⌋
+ (2 − i)

⌊
kf

i

⌋
+ 2kf + 2. (32)

Equation (32) will give the ‘magic numbers’ at which the steps in the chemical potential occur
(at T = 0), when ω satisfies condition (28).

For the special case of i = 1 (ω = 0), equation (32) reduces to the correct expression for
the number of particles in kf + 1 = M + 1 filled shells of an isotropic harmonic oscillator,
namely N = M2 + 3M + 2, as given in [3]. This will require that N ∈ {2, 6, 12, 20, 30, . . .},
which can be directly verified from figure 5. Taking i = 3, so that ω = 1/2, as in figure 6,
gives N ∈ {2, 4, 6, 10, 14, . . .}. It also follows that if ω is irrational there will be no degenerate
energy levels, and steps will therefore occur at every second particle number (or every particle
number if the spin degeneracy factor is omitted). This explanation for the origin of the steps
is, in our opinion, more intuitive than the one presented by Toms, which was based on a
decomposition of the thermodynamic potential into a sum of a smooth and oscillatory terms
with the oscillatory part interpreted in analogy of the de Haas-van Alphen effect. Our analysis
makes it quite clear what the physical origin of these steps are, and is valid for zero or finite
magnetic fields.
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4. Limiting cases

We will now consider several limiting cases, obtaining simplified analytical expressions.
The first case we will consider is the limit of large particle numbers, where we will show
analytically that, at zero temperature, the exact expressions for both the chemical potential and
the kinetic energy approach the pure TF values when N becomes large. We will also consider
the limits of both strong and weak magnetic fields, where we derive simplified expressions for
the kinetic energy and chemical potential (again at zero temperature), and obtain conditions
on the magnetic field strength for the expressions to be valid.

4.1. Large N limit

We first consider the Fermi energy, which is related to the particle number by

N = 2
∑
M,N

	(εf − εMN) (33)

= 2

� εf −1

1+ω
�∑

N=0

(⌊
εf − 1 − (1 + ω)N

1 − ω

⌋
+ 1

)
(34)

= 2

� εf −1

1+ω
�∑

N=0

(
εf − 1 − (1 + ω)N

1 − ω
+ 1

)
− 2

� εf −1

1+ω
�∑

N=0

{
εf − 1 − (1 + ω)N

1 − ω

}
, (35)

where {x} denotes the fractional part of x, i.e. x = �x� + {x}. In the limit as N becomes large,
εf also becomes large, and so the floor function in the limits of the sums in equation (35) will
be well approximated by the argument. Similarly, the second sum in equation (35) becomes
negligible; an upper bound on this sum is 2

( εf −1
1+ω

+ 1
)
. Evaluating the remaining sum in (35)

then leads to

N = ε2
f + (1 − ω)εf + ω − 2ω2

1 − ω2
, (36)

which will be valid provided that

2

(
εf − 1

1 + ω
+ 1

)
� ε2

f + (1 − ω)εf + ω − 2ω2

1 − ω2
, (37)

which implies

εf � 1. (38)

In the limit as εf becomes large, the quadratic term will dominate, giving εf =
√

(1 − ω2)N ,
which is exactly the pure TF result, namely,

N = 1

π

∫ √
2εf /(1−ω2)

0
ρTF(�r)d�r

= ε2
f

1 − ω2
.

It also readily shown that starting from equation (25), the exact kinetic energy also approaches
the pure TF value of ETF

kin = 1
3

√
1 − ω2N 3/2 (i.e., obtained from integrating equation (19) with

equation (20) inserted). As mentioned above, however, the TF expressions will become less
and less accurate as ω → 1, for a fixed number of particles. In this case, the appropriate limit
for correctly reducing to the pure TF result is N → ∞ as ω → 1.
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4.2. Strong fields

It can be seen from figure 4 that for strong magnetic fields, which correspond to ω → 1,
all particles will, at zero temperature, be in an N = 0 state. In this limit the energy of the
occupied levels will be given by

εM = 1 + (1 − ω)M, (39)

with the highest allowed value of M corresponding to N = 2(Mf + 1). As can be seen from
figure 4, the boundary to this strong field regime is defined by the value of ω for which the
highest occupied N = 0 level intersects with the lowest energy N = 1 level on the diagram.
Thus the magnetic field strengths for which the following expressions will be valid are defined
by

1 + (1 − ω)Mf � 1 + (1 + ω), (40)

which gives

ω � Mf − 1

Mf + 1
= N − 4

N
. (41)

The condition on ω above will be satisfied for large magnetic fields and low numbers of
particles. For example, N = 20 particles will require that ω � 0.8 (see figures 3 and 4).

The chemical potential, which at zero temperature is the Fermi energy, is given by

εf = ω +
1 − ω

2
N . (42)

Note that unlike equation (36), there are no quadratic terms in εf . Therefore, when
equation (41) is satisfied, the Fermi energy and particle number are related by a simple
linear relationship. The integrated kinetic energy can also be calculated from equation (25) as

Ekin = 1
2 (1 − ω)2M2

f +
(

3
2ω2 − ω + 3

2

)
Mf + 1 + ω2. (43)

The density matrix may also be easily simplified in the present limit by making use of the
form given in equation (2). Identifying N = n + l, as discussed above, we set n = l = 0 in
equation (2) to obtain the simple expression:

ρ(�r, �r0) = 2

π

Mf∑
m=0

Lm
0 (2A)

Bm

m!
e−A = 2

π
e−A

Mf∑
m=0

Bm

m!

= 2

π

eB−A

Mf !
(Mf + 1,B). (44)

To our knowledge the above expression has not previously appeared in the literature, and may
prove useful in further analytical studies of low temperature Fermi gases.

4.3. Weak fields

In the limit of weak magnetic fields it is more natural to write the energy levels as

εslz = 1 + s + ωlz s = 0, 1, 2, . . . lz = −s,−s + 2, . . . , (45)

where s is the index of the harmonic oscillator shell, and lz is the angular momentum (in the
z-direction), and obviously s = M +N, lz = N −M . The weak magnetic field limit is defined
by the region before the first step in the kinetic energy, or referring to figure 4, the region to the
left of where the energy levels first cross. In this region, the shells of the isotropic harmonic
oscillator will be filled successively, with the degenerate levels in each shell, corresponding
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to particles with different angular momenta, being split by the magnetic field. For simplicity,
we will assume completely filled oscillator shells. Assuming M + 1 filled shells, this region
is defined by

1 + M + ωM � 1 + (M + 1) + ω(−M − 1), (46)

which gives

ω � 1

2M + 1
. (47)

The condition on ω above will be satisfied for low magnetic fields. Again, referring to figures 3
and 4, N = 20 particles will require that ω � 1

7 . Also, note that the number of filled shells is
related to the number of particles by N = M2 + 3M + 2, as was mentioned in the previous
section.

Focusing on the same quantities as in the high field limit, we find the Fermi energy to be

εf = 1 + (1 + ω)M, (48)

which reduces to the correct value for the Fermi energy in the absence of a magnetic
field, εf = 1 + M, as given in [3, 10]. The total kinetic energy may be calculated from
equation (25) as

Ekin = (1 + ω2)
(

1
3M

3 + 3
2M

2 + 13
6 M + 1

)
= (1 + ω2)E

(0)
kin, (49)

where E
(0)
kin is the expression for the exact kinetic energy at ω = 0 [3] (but scaled here by the

effective frequency, h̄ωeff , rather than h̄ωo).
Since all of the same states are occupied as in the ω = 0 case, and the wavefunctions,

namely, equation (7), do not depend explicitly on ω, the density matrix will be identical in
a form to that for a system of fermions in an isotropic harmonic oscillator with no external
magnetic field, as given in [2, 3], the only change being in the scaling of the variables. This
is further evidenced by the fact that the TF kinetic energy (which depends on the diagonal
part of the density matrix) is constant in this region (see figure 3), and indeed only changes in
discrete steps. In the low field regime, therefore, the TF kinetic energy is simply

ETF
kin = E

(0)
kin. (50)

Upon comparing equations (49) and (50), it can be seen that the TF functional only gives the
exact integrated kinetic energy when ω = 0, although it will be very close for small ω. This
analytical result is an affirmation of the surprising finding in [3], in which it was shown that
the TF functional (with the exact density as input and no gradient corrections) integrates to
the exact quantum mechanical kinetic energy at zero magnetic field. We have now shown,
however, that in the presence of an external magnetic field, this result is no longer true.

We emphasize that the expressions given in this and the previous section are not asymptotic
limits, but are exact under the given restrictions; referring to figure 3, they correspond to the
first and last steps in the diagram.

5. Conclusions

We have presented an analytical study of an ideal charged quantum gas confined by a harmonic
potential in two dimensions. While we have focused our attention to the case of fermions,
our exact expressions for the density matrix and kinetic energy density can be easily applied
to bosons, the only change being the ‘+1’ in the denominator of equation (4) replaced by
a ‘−1’ (in addition to dropping the spin degeneracy of two in the case of spinless bosons).
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Unlike other studies of this kind, our results include a constant magnetic field of arbitrary
magnitude in the perpendicular direction and are valid at any finite temperature, though we
have restricted our attention primarily to T = 0. We have focused on a comparison of the exact
quantities with those obtained from the TFA, and motivated by the findings of [3], have shown
analytically that the 2D TF kinetic energy density functional does not integrate to the exact
quantum mechanical kinetic energy when a magnetic field is introduced. The TF functional
does, however, still do surprisingly well at reproducing the quantum mechanical oscillations
in the kinetic energy density, even at low numbers of particles (i.e., O(102)), where it is not
necessarily expected to be accurate, particulary in the absence of gradient corrections.

We have also provided, in our opinion, a much simpler interpretation for the origin of
the step-like structures exhibited by the integrated kinetic energy and chemical potential (at
zero and finite magnetic fields) which were first noted in [4, 5] for the chemical potential at
zero magnetic field. We have also shown analytically that in the limit N → ∞, the exact
expressions for the kinetic energy, and the Fermi energy approach those found in the TF theory,
in addition to providing some simplified expressions of our exact results valid for high and
low magnetic field strengths.
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